Parameter Estimation of Hidden Markov Models (HMM) using go with the Winner Algorithms
نویسندگان
چکیده
منابع مشابه
Parameter estimation in pair hidden Markov models
This paper deals with parameter estimation in pair hidden Markov models (pairHMMs). We first provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The model being biologically motivated, some restrictions with respect to the full parameter space naturally occur. Existence of two different Information divergence rates is established and divergence propert...
متن کاملParameter Estimation for Hidden Markov Models with Intractable Likelihoods
Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. Although the use of ABC is widespread in many fields, there has been little investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the as...
متن کاملRecursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime
This paper is concerned with recursive algorithms for the estimation of hidden Markov models (HMMs) and autoregressive (AR) models under Markov regime. Convergence and rate of convergence results are derived. Acceleration of convergence by averaging of the iterates and the observations are treated. Finally, constant step-size tracking algorithms are presented and examined.
متن کاملInformation Geometry Approach to Parameter Estimation in Hidden Markov Models
We consider the estimation of hidden Markovian process by using information geometry with respect to transition matrices. We consider the case when we use only the histogram of k-memory data. Firstly, we focus on a partial observation model with Markovian process and we show that the asymptotic estimation error of this model is given as the inverse of projective Fisher information of transition...
متن کاملHidden Markov models using fuzzy estimation
In the conventional hidden Markov model, the model parameters are reestimated by an iterative procedure known as the Baum-Welch method. This paper proposes an alternative procedure using fuzzy estimation, which is generalised from the fuzzy c-means and the BaumWelch methods. An extension of this approach, which uses a garbage state to deal with outlier data is also proposed. Experiments using t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2011
ISSN: 0975-8887
DOI: 10.5120/2282-2954